
Load Balancing Optimization in Content Delivery
Networks Using Minimum Spanning Tree

Algorithms
Athilla Zaidan Zidna Fann – 13524068

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
athillazaidanstudy@gmail.com, 13524068@std.stei.itb.ac.id

Abstract—— This paper proposes a Load-Aware Modified
Minimum Spanning Tree (LAM-MST) algorithm to enhance the
efficiency of Content Delivery Networks (CDNs). Unlike classical
MST approaches that focus solely on minimizing distance, LAM-
MST dynamically adjusts edge weights based on node degree
to promote fairer load distribution. Through experiments on
intercity graphs of major Indonesian cities, the proposed method
demonstrates better traffic balancing with minimal cost overhead,
highlighting its potential to reduce bottlenecks in real-world CDN
infrastructures.

Index Terms—LAM-MST, graph, minimum spanning tree,
load balancing, content delivery network

I. INTRODUCTION

Large-scale digital environments have established Content
Delivery Networks (CDNs) to become a foundational in-
frastructure for supporting rapid, reliable, and geographically
scalable distribution of web content. Modern CDNs function
by strategically deploying edge servers in diverse geographic
locations, thereby enhancing to higher availability and reli-
ability of content in distributed networks. This architectural
design plays a vital role in meeting the increasing demands of
applications like video streaming, online gaming, distributed
cloud infrastructures, and large-scale web services.

Increasing user demand presents a major challenge for
CDNs, particularly in developing a load balancing mechanism
that distributes traffic evenly across servers, thus reducing
the risk of bottlenecks and improving system resilience un-
der heavy loads. Load imbalance, particularly in edge-heavy
locations, can significantly damage Quality of Service (QoS)
and lead to suboptimal user experiences.

However, a critical constraint of standards Minimum Span-
ning Tree (MST) Algorithms that are often used for maxi-
mizing the effectiveness of CDNs is their lack of awareness
regarding server-load constraints. Approaches such as Prim’s
and Kruskal’s focus exclusively on minimizing overall link
costs, with no regard for balancing traffic among nodes. Con-
sequently, topologies may emerge where strategically placed
servers become overloaded due to uneven traffic flow.

To specifically address this limitation, this paper proposes a
solution that is Load-Aware Modified Minimum Spanning
Tree (LAM-MST) approach. In this method, each edge’s

weight is adjusted dynamically based on the current load or
degree of its connected nodes. By integrating load sensitivity
directly into the MST construction process, the resulting
network topology aims to maintain low overall cost while
achieving better load balancing.

II. THEORETICAL FOUNDATION

A. Graph Theory Fundamentals

Graph theory is a fundamental mathematical framework
for representing relationships between objects.

1. Definition of Graph
A graph is formally defined as an ordered pair G = (V,E),

where V is a nonempty set of vertices, and E is a set (can be
empty) of edges connecting pairs of vertices. If {u, v} ∈ E,
then the vertices u and v are said to be adjacent, and the edge
is incident to both [9].

Fig. 1. Graph.
Source:https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf.

The degree of a vertex, denoted as deg(v), is the number
of edges that are incident to that vertex. In an undirected
graph, this is simply the count of all edges connected to v. In
a directed graph, each vertex has an in-degree (the number of
incoming edges) and an out-degree (the number of outgoing
edges).

2. Types of Graph
Graphs can be classified into several fundamental types

based on the structure of their edges and additional attributes

mailto:athillazaidanstudy@gmail.com
mailto:13524068@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

assigned to those edges.

• Undirected Graph
In Undirected Graph, each edge is represented in {u, v}.
This indicates a mutual relationship between u and v. That is
the traversal from u to v is equivalent to traversal from v to u.

• Directed Graph
In a directed graph, each edge is represented by an ordered
pair (u, v), indicating a direction from vertex u to vertex v.

Fig. 2. Undirected and Directed Graph.
Source: https://www.academia.edu/15209290/Discrete Maths.

• Unweighted Graph
An unweighted graph is a graph in which all edges are
considered equal in terms of cost, distance, or capacity. In
other words, edges do not carry numerical weights, and the
existence of an edge simply indicates a connection between
two vertices.

• Weighted Graph
A weighted graph is a graph in which each edge is assigned
a numerical value, known as a weight. These weights may
represent various factors such as distance, latency, bandwidth,
or cost, depending on the application. Weighted graphs are
essential in optimization problems, particularly in algorithms
such as Dijkstra’s shortest path and Prim’s minimum
spanning tree, where the weights influence decision-making
in traversing the graph [9].

Fig. 3. Weighted Graph.
Source: https://www.academia.edu/15209290/Discrete Maths.

3. Graph Representation
A graph can be represented in several different ways de-

pending on the required computational efficiency and the na-
ture of the graph itself. The two most common representations
are the adjacency matrix and the adjacency list.
• Adjacency Matrix
An adjency matrix is a square matrix the size of |V | × |V |,

where |V | is the number of vertices in the graph. The entry
row i and column j in the matrix, denoted as A[i][j] that
indicate the edge between vertices vi and vj

• Adjacency List
An adjacency list represents a graph as an array or list of lists.
Each vertex stores a list of its adjacent vertices along with
the weights of the corresponding edges. This representation is
memory-efficient for sparse graphs, where most vertex pairs
are not connected. It also supports efficient traversal and
iteration over neighbors.

Fig. 4. Adjacency Matrix.
Source: https://www.academia.edu/15209290/Discrete Maths.

4. Connectivity and Paths

A fundamental property of a graph is its connectivity, which
describes whether or not all vertices in the graph are reachable
from one another. A graph is said to be connected if, for every
pair of vertices u and v, there exists a path between them. If
even one pair of vertices is not connected by any path, the
graph is considered disconnected.

A path in a graph is defined as a sequence of vertices
v1, v2, . . . , vk such that for each consecutive pair (vi, vi+1),
there exists an edge {vi, vi+1} ∈ E. In a directed graph, the
direction of each edge must also be followed. The length of a
path refers to the number of edges it contains, or the sum of
edge weights if the graph is weighted.

• Simple Path
A simple path is a path in which all vertices are distinct, except
possibly the first and last vertex if the path forms a cycle.

• Cycle
A cycle is a path that starts and ends at the same vertex, with
no repetition of edges or vertices except the starting/ending
point. A graph with no cycles is called an acyclic graph, and
an undirected acyclic connected graph is specifically known
as a tree [9].

5. Subgraphs

A subgraph is a graph formed by selecting a subset of
vertices and edges from a larger graph G = (V,E). Formally,
a subgraph G′ = (V ′, E′) satisfies V ′ ⊆ V and E′ ⊆ E.
Subgraphs are useful for simplifying analysis, focusing on
specific regions of a graph, or extracting meaningful structures
from large networks [9].

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://www.academia.edu/15209290/Discrete_Maths
https://www.academia.edu/15209290/Discrete_Maths
https://www.academia.edu/15209290/Discrete_Maths

Fig. 5. Subgraph.
Source: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf.

B. Tree

A tree is a special type of graph that plays a crucial role
in modeling hierarchical and minimal structures in networks,
algorithms, and data systems. In the context of this paper,
trees serve as the foundation for minimum-cost connectivity
models such as Minimum Spanning Trees (MSTs).

1. Definition of Tree
A tree is a connected undirected graph with no cycles. That

is, for any pair of vertices in the graph, there exists exactly
one simple path connecting them. This ensures that a tree is
both connected and acyclic [9].

Fig. 6. Tree. Source: https://www.academia.edu/15209290/Discrete Maths.

2. Tree Properties
A tree with n vertices always contains exactly n − 1 edges.
This fundamental property ensures that the structure remains
minimally connected without forming cycles. Adding any new
edge to a tree will inevitably create a single cycle, violating
its acyclic nature. Conversely, removing any existing edge will
disconnect the graph, as each edge is essential to maintaining
connectivity. Moreover, between every pair of vertices in
a tree, there exists a unique simple path, emphasizing the
efficiency and non-redundancy of the tree structure.

These properties make trees highly efficient structures
for establishing minimal connections without redundancy,
ensuring optimal use of resources while maintaining full
network connectivity. Because of these characteristics, the
concept of trees is widely applicable in various domains,

particularly in network design and optimization. In the context
of Content Delivery Networks (CDNs), tree-based structures
can be used to model efficient content distribution paths
that reduce overall transmission cost, minimize latency, and
ensure that content reaches end users through the shortest or
least expensive routes available.

3. Spanning Tree
Given a connected undirected graph G = (V,E), a

spanning tree is a subgraph T = (V,E′), where E′ ⊆ E,
that includes all vertices of G and forms a tree. A spanning
tree maintains connectivity of the original graph with exactly
|V | − 1 edges, and by definition, does not contain cycles [9].

4. Minimum Spanning Tree (MST)
When each edge in a graph is assigned a numerical weight

representing cost, distance, or latency, the goal is often to find
a spanning tree with the minimum total weight. Such a tree is
called a Minimum Spanning Tree (MST).

Fig. 7. Minimum Spanning Tree.
Source:https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
23-Pohon-Bag1-2024.pdf.

Two classical greedy algorithms are widely used to compute
MSTs:
Prim’s Algorithm [9]:
1. Start with any vertex.
2. At each step, add the minimum-weight edge that connects
a visited vertex to an unvisited vertex.
3. Repeat until all vertices are included in the tree.
Kruskal’s Algorithm [9]:
1. Sort all edges in increasing order of weight.
2. Add edges one by one, skipping those that would form a
cycle.
3. Stop when |V | − 1 edges have been added.

While MSTs are effective at minimizing total connection
cost, traditional algorithms like Prim’s and Kruskal’s do not
account for load distribution or node degree. In large-scale
network systems such as Content Delivery Networks (CDNs),
this can result in bottlenecks, where high-degree nodes are
overused.

To address this limitation, the next section introduces an
approach that modifies MST to become load-aware: the Load-
Aware Modified Minimum Spanning Tree (LAM-MST).

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://www.academia.edu/15209290/Discrete_Maths
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf

C. Content Delivery Networks and Load Balancing Chal-
lenges

1. Definition of CDN
A Content Delivery Network (CDN) is a geographically

distributed network of proxy servers designed to deliver
content to end-users with high availability and performance.
CDNs replicate content across multiple servers located at
various locations, allowing users to access data from the
nearest edge server rather than the origin server. This design
reduces latency and bandwidth usage, and improves the
overall responsiveness of services.

Fig. 8. Content Delivery Network.
Source: https://www.cloudns.net/blog/wp-content/uploads/2023/04/CDN.png

2. CDN Architecture
The architecture of a CDN typically consists of:

• Origin Servers: The central repository of web content.
• Edge Servers: Distributed servers that cache content

closer to users.
• Routing Logic: Algorithms that determine which edge

server should serve which user.
Clients are redirected to the nearest or most optimal edge

server based on various criteria such as geographic location,
current server load, or network conditions. This hierarchical
and distributed architecture enables scalable delivery of
content to millions of users simultaneously.

3. Load Balancing Issues in CDNs
As user demands increase, load balancing becomes a critical

factor in maintaining Quality of Service (QoS). Ideally, traffic
should be distributed evenly across all available servers. How-
ever, in practice, some servers—especially those at strategic
network positions—may experience disproportionately high
traffic, leading to:

• Bottlenecks and increased latency
• Server overloading and potential downtime
• Inefficient use of network resources
These issues degrade user experience and reduce the

reliability of the entire network.

4. Limitations of MST in CDN Topology Design

Minimum Spanning Tree (MST) algorithms such as Prim’s
and Kruskal’s are often applied to construct efficient network
topologies that minimize total connection cost. However, tra-
ditional MST algorithms do not consider node-level metrics
such as server capacity or real-time traffic load.

As a result, MST-generated topologies may create structures
where high-degree nodes are overloaded with connections and
traffic, while others are underutilized. This leads to:

• Imbalanced traffic distribution
• Centralization of network pressure on a few nodes
• Increased risk of congestion and performance degradation

5. Toward a Load-Aware Topology
To overcome these challenges, this paper propose a modified

version of MST that incorporates load-awareness into the edge
selection process. This approach, called the Load-Aware Mod-
ified Minimum Spanning Tree (LAM-MST), aims to produce
more balanced network topologies by penalizing high-degree
nodes during edge selection.

The next section will introduce the formulation and rationale
behind the LAM-MST method.

D. Load-Aware Modified Minimum Spanning Tree (LAM-
MST)

The LAM-MST is an upgrade of the classical Minimum
Spanning Tree algorithm that specifically designed to over-
come the problem of uneven load distribution in network
topologies, particularly in Content Delivery Network (CDNs).
While classical MST algorithm minimize the total edge
weights, they often result in structure that overload certain
strategic nodes. LAM-MST incorporates node degree aware-
ness into the weight calculation to make a more balanced trees.
1. Edge Weight Modification

The core idea of LAM-MST is to adjust the original edge
weights dynamically based on the nodes that being involved.
The modified weight W ′(u, v) can be computed as:

W ′(u, v) = w(u, v) + α · (deg(u) + deg(v))

In this formula w(u, v) is the original weight of the edge
and W ′(u, v) is the adjusted weight. deg(u) and deg(v) denote
the degrees of u and v respectively at the time of evaluation,
and lastly α is the changeable penalty factor that determines
how strong node degree should influence edge selection.

This LAM-MST method involve a penalty strategy that
favors lower-degree nodes and discourages the selection of
edges that connected to a heavy degree nodes, making the
network traffic balanced.

2. LAM integration into MST Algorithm
The LAM-MST strategy can be integrated into already exist-

ing MST algorithms, such as Prim’s and Kruskal’s Algorithm
by replacing the original weight w to the new weights W ′.

While both Prim’s as well as Kruskal’s are theoretically
compatible with LAM-MST, Kruskal’s algorithm is superior
in this case. Kruskal’s edge focus approach allows a really
straightforward incorporation of the modified weights, since

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://www.cloudns.net/blog/wp-content/uploads/2023/04/CDN.png

all the edges can be processed and sorted based on W ′

value prior to the tree construction phase. Kruskal’s Algorithm
also support dynamic updates of node degrees during edge
selection, this really aligns well with the LAM strategy.

On the other hand, Prim’s Algorithm builds MST
incrementally form a single starting vertex, only relying
based on a priority queue to select the next minimum weight
edge. Integrating LAM strategy to Prim’s Algorithm is quite
challenging, as it would require frequent updates to the
priority queue and recalculations of edge weights during the
process. With this in mind, for the purpose of integrating
LAM-MST strategy, this paper will be using Kruskal’s
Algorithm from this point forward.

3. Advantages of LAM-MST
The Load-Aware Modified Minimum Spanning Tree (LAM-

MST) offers several notable advantages over the traditional
MST algorithms, especially when applied in environments
that are really sensitive to load distribution such as Content
Delivery Network.
• Balance Load Distribution
This strategy mainly operate by penalizing edges connected to
high-degree nodes, LAM-MST discourages overloading cer-
tain nodes and promotes a more uniform spread of connection
across the network.
• Reduced Bottlenecks
The algorithm avoids the formation of centralized structures
where a single node handles a disproportionate share of traffic,
thereby reducing the risk of congestion and service latency.
• Cost Efficiency with Flexibility
Although LAM-MST may slightly increase the total cost
compared to the minimum spanning tree, the penalty factor
α offers flexibility in adjusting the balance between cost and
load distribution.

E. Geographical Distance and the Haversine Formula

In graph-based modeling of real-world systems such as
Content Delivery Networks (CDNs), it is important for edge
weights to reflect the physical cost of connecting different
locations. This study uses geographical distance as a proxy
for transmission cost or latency.

To model this realistically, the Haversine formula is used,
which computes the great-circle distance between two points
on the Earth’s surface using their latitude and longitude.
This allows the network graph to reflect real-world spatial
relationships between cities.

The detailed formula and its application in this study are
described in the Methodology section.

III. METHODOLOGY

A. System Model

In this research, the underlying infrastructure of a Con-
tent Delivery Network (CDN) is modeled as an undirected
weighted graph G = (V,E), where:

• Each vertex v ∈ V represents a server, data center, or
edge node in the network.

• Each edge e = (u, v) ∈ E represents a potential
communication link between two nodes, and is associated
with a weight w(u, v) that reflects the transmission cost.

The weight of each edge may correspond to physical
distance, network latency, or bandwidth cost. In this study, a
geographical approximation is used, where weights are based
on estimated latency between cities or nodes derived from
real-world spatial distribution.

The resulting graph is assumed to be connected, sparse,
and scalable—characteristics typically found in real CDN
topologies. Nodes located in highly populated or strategically
significant areas are assigned more edges to simulate dense
interconnection, resembling regional content hubs.

This network model provides the basis for evaluating the
performance of the Load-Aware Modified Minimum Spanning
Tree (LAM-MST) algorithm, in terms of both cost optimiza-
tion and balanced traffic distribution across the network.

B. Parameter Configuration

The core parameter in the LAM-MST algorithm is the
penalty factor α, which controls the influence of node degree
in modifying edge weights. The modified weight formula:

W ′(u, v) = w(u, v) + α · (deg(u) + deg(v))

introduces a trade-off between minimizing total connection
cost and balancing node utilization. A higher value of α
increases the penalty for connecting to high-degree nodes,
thereby promoting a more even distribution of traffic load.

In this study, two configurations are compared:
• α = 0.0

baseline using the standard MST algorithm without load
awareness.

• α = 100.0
moderately penalizes high-degree nodes to encourage
load balancing.

These values are chosen to highlight the structural and
behavioral differences between conventional MST and the
LAM-MST approach under realistic CDN scenarios.

C. Graph Construction Strategy

To simulate a realistic CDN deployment in Indonesia while
keeping the topology manageable, this study focuses on major
cities located on the islands of Java and Sumatra. These cities
are selected based on their population size, digital infrastruc-
ture relevance, and geographical distribution, ensuring both
coverage and diversity in connectivity scenarios.

Each city is modeled as a node in the graph, and the
geographical distance between them is used as the base edge
weight. To calculate these distances accurately over the Earth’s
curvature, the Haversine formula is applied:

d(u, v) = 2r · arcsin
(√

sin2
(

∆ϕ
2

)
+ cos(ϕu) cos(ϕv) sin

2
(
∆λ
2

))
where:
• ϕu, ϕv: the latitudes of cities u and v in radians,

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

• ∆ϕ = ϕv − ϕu, ∆λ = λv − λu,
• r: the radius of Earth, approximated as 6371 km.
To maintain sparsity and realism in the graph, a distance

threshold of 1000 kilometers is used. An edge is created
between two cities only if the calculated distance is less than
or equal to this threshold. This reflects practical constraints
in physical inter-city routing and ensures that connections are
feasible from an infrastructure standpoint.

This results in a sparse, yet connected, graph structure
consisting of 10 cities, five from Java and five from Sumatra.
The resulting topology shows natural clustering behavior,
with dense intra-island connections and limited inter-island
bridging.

The adjacency matrix generated from this construction is
exported to CSV format and used as input for both MST and
LAM-MST simulations.

D. Evaluation Metrics

To evaluate the impact of incorporating load-awareness
into the minimum spanning tree construction, we compare
two configurations of the algorithm: the standard MST with
α = 0, and the Load-Aware Modified MST (LAM-MST) with
α = 100. The following metrics are used for comparison:

• Total Tree Cost
The sum of all edge weights in the final spanning tree.
This metric reflects the overall cost of connecting all
nodes. Lower values are desirable for cost minimization.

• Maximum Node Degree
The highest degree among all nodes in the spanning
tree. A lower maximum degree indicates better load
distribution and reduced risk of bottlenecks.

• Degree Standard Deviation
The standard deviation of node degrees across the net-
work. This metric captures the fairness of load distribu-
tion—lower values suggest more balanced utilization of
nodes.

These metrics allow us to quantitatively compare the struc-
tural behavior and cost-effectiveness of LAM-MST against the
baseline MST. In particular, the goal is to observe whether the
increase in total cost from applying load penalties (α = 100)
results in better balance in the degree distribution.

IV. IMPLEMENTATION

A. Graph Construction

To construct a realistic model of a Content Delivery Net-
work (CDN), this study selects ten major cities in Indonesia
as nodes in the graph. These cities are strategically chosen to
represent urban centers across two major islands that is Java
and Sumatra where population density, network traffic, and
infrastructure development are significantly high. The selected
cities are:

• Java Island
Jakarta (JKT), Bandung (BDG), Semarang (SMG), Yo-
gyakarta (YGY), Surabaya (SBY)

• Sumatra Island
Medan (MDN), Padang (PDG), Palembang (PLB),
Pekanbaru (PKU), Jambi (JBI)

Each city is associated with a pair of geographical coordi-
nates (latitude and longitude), which were retrieved from the
LatLong.net geolocation database and verified using Google
Maps. These coordinates serve as the basis for estimating inter-
city distances using the Haversine formula, which computes
great-circle distances between points on the Earth’s surface.
The full mathematical expression of this formula is given in
the Methodology section.

To maintain graph sparsity and ensure realistic regional
communication, a distance threshold of 1000 km is applied.
Only city pairs within this threshold are connected by an edge
in the graph. The resulting adjacency matrix and adjacency
list are used for further analysis and implementation.

To support the construction process and data handling,
several Python libraries are utilized in the implementation:

• math
Used to implement the Haversine formula, particularly for
trigonometric operations such as radians, sin, cos,
and atan2.

• numpy
Utilized for efficiently creating and managing the adja-
cency matrix through its multi-dimensional array opera-
tions.

• pandas
Employed to construct and export the adjacency matrix
and adjacency list into CSV format for further analysis
and visualization.

These libraries are chosen due to their efficiency, ease of
use, and widespread adoption in scientific computing and
data processing within the Python ecosystem.

1. City Coordinates and Code Mapping

Fig. 9. Python code for city latitude and longitude data

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://www.latlong.net
https://www.google.com/maps
https://www.google.com/maps

The code snippet shown defines a Python dictionary con-
taining the names, coordinates (latitude and longitude), and
corresponding 3-letter codes for each selected city. This map-
ping facilitates consistent referencing of city nodes in the
graph construction and output files. The use of structured city
codes ensures clarity and compactness in matrix representa-
tions and algorithm outputs.
2. Haversine Distance Calculation

Fig. 10. Python code for Haversine function

The code snippet shown presents the implementation of the
Haversine function, which is used to calculate the great-circle
distance between two geographic coordinates on the Earth’s
surface. This function forms the core of edge weight com-
putation, converting real-world latitude and longitude values
into approximate distances in kilometers. The result of this
function determines whether two cities should be connected
based on the specified distance threshold.
3. Building the Adjacency Matrix and List

Fig. 11. Python code for constructing adjacent matrix and adjacent list

The code snippet shown utilizes the Haversine function to
compute pairwise distances between all cities. If the distance
between two cities is less than or equal to the 1000 km
threshold, an edge is created in both the adjacency matrix and
adjacency list. The matrix format supports efficient distance
lookup for algorithms, while the list format is used in the
MST construction phase. The adjacency data is also exported
to CSV for reproducibility and further analysis.

B. Kruskal’s Minimum Spanning Tree Algorithm

Kruskal’s algorithm is used as the baseline implementa-
tion of the Load-Aware Modified Minimum Spanning Tree
(LAM-MST) with the penalty factor set to α = 0. In this
configuration, edge weights are not modified by node degrees,
resulting in a standard minimum spanning tree construction
based purely on physical distances.

The implementation is done in Python using a simple edge
list and Union-Find (Disjoint Set Union) structure. All edges
are sorted by weight, and the algorithm iteratively selects
edges that do not form a cycle, resulting in an acyclic, fully
connected subgraph with minimum total cost.

Fig. 12. Kruskal’s Algorithm in Python

This version of Kruskal’s algorithm serves as a reference
point to evaluate the effectiveness of the load-aware version
discussed in the next subsection.

C. Load-Aware Modified Minimum Spanning Tree Algorithm

To address the limitations of traditional MST algorithms,
this section presents an enhanced implementation called Load-
Aware Modified Minimum Spanning Tree (LAM-MST), based

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

on the Kruskal algorithm with a penalty factor α = 100. In
this configuration, the edge weights are dynamically adjusted
according to the degree of the nodes involved, following the
modified formula:

W ′(u, v) = w(u, v) + α · (deg(u) + deg(v))

This adjustment discourages over-connection to highly con-
nected nodes and leads to a more balanced load distribution
across the network.

The following Python implementation extends the Kruskal’s
Algorithm baseline by integrating real-time degree tracking
during MST construction. The degrees are updated every time
an edge is added to the tree.

Fig. 13. LAM-MST Algorithm in Python

This implementation prioritizes load balancing over purely
minimizing distance, and the effect of this trade-off will be
analyzed in the next section through structural comparison and
cost evaluation.

V. TESTS AND RESULTS

This section presents the comparative evaluation between
the classical Minimum Spanning Tree (MST) and the Load-
Aware Modified Minimum Spanning Tree (LAM-MST) algo-
rithm. The goal is to analyze their performance in optimizing
connection cost and balancing traffic load across network
nodes.

A. Experimental Setup

All experiments were conducted on a dataset consisting of
10 major cities in Indonesia, spread across Java and Sumatra.
The connectivity threshold was set to 1000 km, enabling a
reasonably dense network with sufficient connection options.

TABLE I
ADJACENCY MATRIX OF SELECTED CITIES USED IN EXPERIMENTS

(IN KM)

JKT BDG SMG YGY SBY MDN PDG PLB PKU JBI

JKT 0 117 405 427 661 0 922 424 956 623
BDG 117 0 311 319 568 0 0 540 0 739
SMG 405 311 0 88 257 0 0 771 0 965
YGY 427 319 88 0 269 0 0 819 0 0
SBY 661 568 257 269 0 0 0 0 0 0
MDN 0 0 0 0 0 0 541 997 462 798
PDG 922 0 0 0 0 541 0 534 198 363
PLB 424 540 771 819 0 997 534 0 536 199
PKU 956 0 0 0 0 462 198 536 0 337
JBI 623 739 965 0 0 798 363 199 337 0

TABLE II
ADJACENCY LIST OF SELECTED CITIES USED IN EXPERIMENTS

From To Distance (km)

JKT BDG 117
JKT SMG 405
JKT YGY 427
JKT SBY 661
JKT PDG 922
JKT PLB 424
JKT PKU 956
JKT JBI 623
BDG JKT 117
BDG SMG 311
BDG YGY 319
BDG SBY 568
BDG PLB 540
BDG JBI 739
SMG JKT 405
SMG BDG 311
SMG YGY 88
SMG SBY 257
SMG PLB 771
SMG JBI 965
YGY JKT 427
YGY BDG 319
YGY SMG 88
YGY SBY 269
YGY PLB 819
SBY JKT 661
SBY BDG 568
SBY SMG 257
SBY YGY 269

From To Distance (km)

MDN PDG 541
MDN PLB 997
MDN PKU 462
MDN JBI 798
PDG JKT 922
PDG MDN 541
PDG PLB 534
PDG PKU 198
PDG JBI 363
PLB JKT 424
PLB BDG 540
PLB SMG 771
PLB YGY 819
PLB MDN 997
PLB PDG 534
PLB PKU 536
PLB JBI 199
PKU JKT 956
PKU MDN 462
PKU PDG 198
PKU PLB 536
PKU JBI 337
JBI JKT 623
JBI BDG 739
JBI SMG 965
JBI MDN 798
JBI PDG 363
JBI PLB 199
JBI PKU 337

Two algorithmic configurations were evaluated:

• Kruskal’s Standard MST (α = 0)
Edge weights are purely based on geographic distance
using the Haversine formula.

• LAM-MST (α = 100)
Edge weights are adjusted by adding penalties based on
node degree, promoting more balanced connectivity.

The implementation and evaluation were performed using
Python. Three primary metrics were used for comparison:

1) Total Tree Cost
sum of all edge weights in the final spanning tree.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

2) Maximum Node Degree
the highest degree (number of connections) among all
nodes.

3) Degree Standard Deviation
variance in degree distribution across all nodes.

For full reproducibility, all source code and datasets used
in this study are publicly available at:

https://github.com/AthillaZaidan/Load-Balancing-
Optimization-in-Content-Delivery-Networks-Using-
Minimum-Spanning-Tree-Algorithms

B. Results and Analysis

With the that 10 cities data, we get these results for the two
approaches:

Fig. 14. Kruskal’s Algorithm (α = 0) result

Fig. 15. LAM-MST (α = 100) result

The table below summarizes the result of the two ap-
proaches:

TABLE III
COMPARISON BETWEEN MST AND LAM-MST

Metric MST (α = 0) LAM-MST (α = 100)

Total Cost (km) 2393 2480
Maximum Node Degree 3 2
Degree Std Deviation 0.75 0.4

To complement the numerical analysis, the following figures
visualize the resulting network topologies generated by each
algorithm. Each node represents a city, and each edge corre-
sponds to a selected connection in the spanning tree, annotated
with the associated distance.

Fig. 16. Visualization of graph that constructed using Kruskal’s Algorithm

Fig. 17. Visualization of graph that constructed using LAM-MST

The LAM-MST algorithm produces a more evenly dis-
tributed network structure, as evidenced by a lower maxi-
mum degree and smaller standard deviation in node degrees.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms
https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms
https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms

While the total cost increases slightly, this trade-off yields a
better load balancing outcome, which is crucial for avoiding
bottlenecks in real-world Content Delivery Network (CDN)
scenarios.

Overall, LAM-MST demonstrates its effectiveness in dis-
tributing load more fairly while maintaining acceptable net-
work efficiency.

Visual inspection of the graphs above supports the quan-
titative metrics discussed earlier, reinforcing the advantage
of incorporating load-awareness into the tree construction
process.

VI. CONCLUSION

This study evaluates the effectiveness of the Load-Aware
Modified Minimum Spanning Tree (LAM-MST) approach in
optimizing graph-based Content Delivery Networks (CDNs).
By integrating node degree penalties into the edge weight
calculation, LAM-MST addresses the limitations of traditional
Minimum Spanning Tree (MST) algorithms that only focus on
minimizing total connection cost.

The implementation and testing on a graph consisting of ten
major cities in Indonesia show that while LAM-MST slightly
increases the total cost (from 2393 km to 2480 km), it achieves
a more balanced structure with lower maximum node degree
(from 3 to 2) and reduced degree standard deviation (from
0.75 to 0.4). This result indicates better traffic distribution and
load balancing, which are essential in maintaining efficient and
scalable CDN performance.

Overall, the LAM-MST algorithm provides a meaning-
ful trade-off between connection efficiency and fairness in
node utilization. These findings highlight the importance of
considering both cost and load distribution when designing
communication networks.

VII. APPENDIX

A. Github Repository for this project

https://github.com/AthillaZaidan/Load-Balancing-
Optimization-in-Content-Delivery-Networks-Using-
Minimum-Spanning-Tree-Algorithms

B. Video Explanation

https://youtu.be/wSWZuOK9ssA

VIII. ACKNOWLEDGMENT

The author would like to express sincere gratitude to God
for His endless blessings and guidance. Through His grace,
the author remained in good health and spirit throughout the
process of writing this paper.

The deepest thanks are also extended to the author’s beloved
parents, whose unwavering support and tireless efforts have
been a constant source of strength and motivation.

Special appreciation is given to Mr. Arrival Dwi Sentosa,
S.Kom., M.T., lecturer of Discrete Mathematics for class K02
IF1220, for his dedication, clarity in teaching, and continued
support during the semester.

The author is also deeply thankful to the author’s family
in Keluarga Mahasiswa Jambi (KMJ), who have provided a
meaningful space for growth, learning, and belonging through-
out this academic journey.

Warm thanks go to fellow classmates in K02 and K01 for
their valuable insights and friendly discussions, which greatly
contributed to the completion of this paper.

Finally, the author expresses heartfelt appreciation to the
author’s beloved partner, who has stood by the author’s side
through endless long nights this semester, offering encourage-
ment, warmth, and unwavering support.

REFERENCES

[1] Raja Ayyanar Adarsh Nagarajan. Application of minimum spanning tree
algorithm for network reduction of distribution systems, 2014. [Online].
Available: https://www.researchgate.net/publication/286679449
Application of Minimum Spanning Tree algorithm for network
reduction of distribution systems [Accessed: Jun. 17, 2025].

[2] Ahmed Khattab Marwa Mamdouh, Khaled Elsayed. Rpl load balancing
via minimum degree spanning tree, 2016. [Online]. Available: http:
//eece.cu.edu.eg/∼akhattab/files/RPL WiMob 2016.pdf [Accessed: Jun.
17, 2025].

[3] Rajkumar Buyya Mukaddim Pathan and Athena Vakali. Content delivery
networks: State of the art,insights, and imperatives, 2008. [Online].
Available: http://www.buyya.com/papers/CDNIntro-2008.pdf [Accessed:
Jun. 17, 2025].

[4] Rinaldi Munir. Graf (Bagian 1), 2024. [Online]. Avail-
able: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
20-Graf-Bagian1-2024.pdf. [Accessed: Jun. 18, 2025].

[5] Rinaldi Munir. Graf (Bagian 2), 2024. [Online]. Avail-
able: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
21-Graf-Bagian2-2024.pdf. [Accessed: Jun. 18, 2025].

[6] Rinaldi Munir. Graf (Bagian 3), 2024. [Online]. Avail-
able: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
22-Graf-Bagian3-2024.pdf. [Accessed: Jun. 18, 2025].

[7] Rinaldi Munir. Pohon (Bagian 1), 2024. [Online]. Avail-
able: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
23-Pohon-Bag1-2024.pdf. [Accessed: Jun. 18, 2025].

[8] Rinaldi Munir. Pohon (Bagian 2), 2024. [Online]. Avail-
able: https://informatika.stei.itb.ac.id/∼rinaldi.munir/Matdis/2024-2025/
24-Pohon-Bag2-2024.pdf. [Accessed: Jun. 18, 2025].

[9] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-
Hill Education, New York, 7 edition, 2012. [Online]. Available:
https://www.academia.edu/15209290/Discrete Maths. [Accessed: Jun. 18,
2025].

STATEMENT

I hereby declare that this paper is an original work, written
entirely on my own, and does not involve adaptation, transla-
tion, or plagiarism of any other individual’s work.

Bandung, 20 June 2025

Athilla Zaidan Zidna Fann, 13524068

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms
https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms
https://github.com/AthillaZaidan/Load-Balancing-Optimization-in-Content-Delivery-Networks-Using-Minimum-Spanning-Tree-Algorithms
https://youtu.be/wSWZuOK9ssA
https://www.researchgate.net/publication/286679449_Application_of_Minimum_Spanning_Tree_algorithm_for_network_reduction_of_distribution_systems
https://www.researchgate.net/publication/286679449_Application_of_Minimum_Spanning_Tree_algorithm_for_network_reduction_of_distribution_systems
https://www.researchgate.net/publication/286679449_Application_of_Minimum_Spanning_Tree_algorithm_for_network_reduction_of_distribution_systems
http://eece.cu.edu.eg/~akhattab/files/RPL_WiMob_2016.pdf
http://eece.cu.edu.eg/~akhattab/files/RPL_WiMob_2016.pdf
http://www.buyya.com/papers/CDNIntro-2008.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://www.academia.edu/15209290/Discrete_Maths

	Introduction
	Theoretical Foundation
	Graph Theory Fundamentals
	Tree
	Content Delivery Networks and Load Balancing Challenges
	Load-Aware Modified Minimum Spanning Tree (LAM-MST)
	Geographical Distance and the Haversine Formula

	Methodology
	System Model
	Parameter Configuration
	Graph Construction Strategy
	Evaluation Metrics

	Implementation
	Graph Construction
	Kruskal’s Minimum Spanning Tree Algorithm
	Load-Aware Modified Minimum Spanning Tree Algorithm

	Tests and Results
	Experimental Setup
	Results and Analysis

	Conclusion
	Appendix
	Github Repository for this project
	Video Explanation

	Acknowledgment
	References

